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Abstract

Amounts of historical data collected increase together with business intelligence applicability

and demands for automatic forecasting of time series. While no single time series modeling

method is universal to all types of dynamics, forecasting using ensemble of several methods

is often seen as a compromise. Instead of fixing ensemble diversity and size we propose

to adaptively predict these aspects using meta-learning. Meta-learning here considers two

separate random forest regression models, built on 390 time series features, to rank 22

univariate forecasting methods and to recommend ensemble size. Forecasting ensemble

is consequently formed from methods ranked as the best and forecasts are pooled using

either simple or weighted average (with weight corresponding to reciprocal rank). Proposed

approach was tested on 12561 micro-economic time series (expanded to 38633 for various

forecasting horizons) of M4 competition where meta-learning outperformed Theta and Comb

benchmarks by relative forecasting errors for all data types and horizons. Best overall results
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were achieved by weighted pooling with symmetric mean absolute percentage error of 9.21%

versus 11.05% obtained using Theta method.

Keywords: univariate time series model; forecasting ensemble; meta-learning; random forest; M4 compe-

tition.

1 Introduction

Forecasting of key performance indicators as well as any important dynamics in any organisation should be

business intelligence task of high priority, where the aim is to envisage indicator’s values into the future,

based on historical observations. An accurate forecast mitigates uncertainties about future outlook and

can help to reduce errors in decisions and planning, which directly influences achievability of goals and

contributes to risk management. Forecasting should be an integral part of the decision-making activities in

management (Hyndman, 2010), since strategic success of the organisation depends upon effective relation

between accuracy of forecast and flexibility of resource allocation plan (Wacker and Lummus, 2002). It

is expected that increasing amounts of historical data records, which constitute useful resources for the

forecasting task, will facilitate accurate forecasting as well as boost importance of these forecasts.

Almost 40 years ago worldwide Makridakis forecasting competitions have started (organized in 1982, 1993,

2000, 2018 and 2020) with a goal to benchmark progress in forecasting techniques and derive scientific

insights in time series forecasting. During these events teams of participants compete in obtaining forecasts

for increasing amounts of time series from diverse fields and results are summarized into recommendations on

usefulness of various time series models or their ensembles. In the recent M4 competition (Makridakis et al.,

2018) the leading forecasting techniques (12 from 17 most accurate ones) featured model ensembles which pool

forecasts of several mainly statistical models. The best solution was submitted by Uber Technologies where

hybrid technique combined statistical forecasting model with neural network architecture. The next most

successful submission (Montero-Manso et al., 2020) featured ensemble of statistical models where weights

were tuned and these weight recommendations were learned by machine learning model for later prediction.

Insights after an older M3 competition (Makridakis and Hibon, 2000) could be summarized succinctly as

follows - forecasts from univariate time series models almost always (except for annual data) are more accurate

than forecasts from multivariate time series models with external variables (i.e. macroeconomic indicators)

and comparison between univariate approaches revealed that more complex models don’t guarantee higher

accuracy.



Proceeding from results of Makridakis competitions (Makridakis et al., 2018; Makridakis and Hibon, 2000)

and numerous academic researches (Clemen, 1989; Hansen and Salamon, 1990; Hendry and Clements, 2004;

Timmermann, 2006; Kolassa, 2011) it can be concluded that ensemble of univariate time series models often

outperform the best member of the ensemble with respect to forecasting accuracy. Success of forecasting

ensemble lies in the diversity of its members (Oliveira and Torgo, 2015), which contributes to robustness

against concept drift (Zang et al., 2014) and enhances algorithmic stability (Zou and Yang, 2004). Besides

ensemble diversity, individual accuracy of its members is also of utmost importance (Lemke and Gabrys,

2010). Regarding strategies when combining forecasts from several models, simple arithmetic average with all

members weighted equally often outperforms more complex approaches which seek to find optimal weights,

for example, based on model’s Akaike information criterion (Kolassa, 2011) or model’s in-sample forecasting

errors (Smith and Wallis, 2009) on the recent dynamics of time series in question. In practice, to avoid

corrupting final forecast by a single inaccurate model, variants of robust average or simply median are

recommended in forecast pooling (Hendry and Clements, 2004). Choice of weight for ensemble member

often relies upon in-sample forecasting errors, although when approximate ranking of model pool is available

instead of exact errors, weight could be derived from model’s reciprocal rank (Aiolfi and Timmermann,

2006).

Machine learning and optimization fields have a ”no free lunch” rule, which states that if a method out-

performs other methods on a specific data then there exists data where this method is outperformed by

others, i.e. there exists no forecasting method that performs best on all types of time series (Bauer et al.,

2020). It can be deduced that the same rule should hold if instead of a single method we use a more complex

technique - an ensemble of a fixed size with members weighted equally. Efforts to adjust ensemble size, choice

of members or their weights could potentially overcome this rule by forming ensemble adaptively based on

dynamics we try to extrapolate into the future.

Our research explores an adaptive construction of forecasting ensemble, consisting of various statistical as

well as a few machine learning methods, with the help of meta-learning, which seeks to rank a pool of

methods and recommend ensemble size based on characteristics of historical time series data. Recommenda-

tions of introduced forecasting assistants are based on training regression meta-models through forecasting

experiments on a diverse set of real world examples - micro-economic time series from M4 competition.

Experiments compare introduced forecasting ensemble based on recommendations from assistants with the

best benchmark methods from M4 competition - Theta and Comb, which were outperformed only by 17 out

of 49 submissions in M4 competition (Makridakis et al., 2018; Makridakis et al., 2020).



2 Related work

The most similar research with respect to our idea of forecasting assistants, after early expert system with

rules derived by human analysts in (Collopy and Armstrong, 1992), are forecasting techniques based on meta-

learning (Lemke and Gabrys, 2010; Talagala et al., 2018; Bauer et al., 2020) and recommendation rules (Wang

et al., 2009; Zuefle et al., 2019). In general, meta-learner after induction phase is capable to indicate which

learning method is the most appropriate to a given problem (Rokach, 2006). Meta-learning concept for time

series forecasting uses machine learning model (i.e. decision tree or ensemble of trees) and trains it on a

set of features, – various characteristics of time series, – with a goal of recommending the most suitable

univariate time series model. It was also found that meta-learning is effective even when the meta-learner

is trained on time series from one domain and tested on time series from another domain (Ali et al., 2018),

suggesting machine learning universal capability more widely known as transfer learning. FFORMS (Feature-

based FORecast Model Selection) (Talagala et al., 2018) idea was implemented in R package seer besides

participation in M4 competition, but due to mediocre performance it was further developed into adaptive

forecasting ensemble FFORMA (Feature-based FORecast Model Averaging) (Montero-Manso et al., 2018;

Montero-Manso et al., 2020), available in R package M4metalearning, achieving 2nd place in M4 competition.

Three novel approaches for forecasting method recommendation, where meta-learning task was based on

classification or regression or both, were evaluated in (Bauer et al., 2020) with recommendation considering

explicitly a machine learning-based regressor method instead of a statistical one.

The main difference of FFORMA approach over FFORMS and other forecasting method recommendation

systems referenced above is that combination weights for a pool of models in an ensemble is recommended

instead of a single best model. Building upon success of FFORMA we propose to simplify meta-learning by

decomposing it into two separate regression tasks, where A1 assistant ranks the pool of potential time series

models and A2 assistant recommends ensemble size to cap the ranked list.

3 Methodology

Assistants A1 and A2 use time series features for modeling and meta-learning target attribute, which corre-

sponds to a rank of a specific forecasting technique for A1 and a recommended ensemble size for A2. Each

time series used in meta-learning is split into train/test parts and features are calculated on training part

while forecasts using a pool of univariate forecasting models are obtained on testing part. Forecasting errors

on testing part are estimated and forecasting models are ranked for A1 as well as all possible ensembles are



evaluated for A2.

3.1 Time series features

Table 1: Overview of time series features for meta-learning: 130 time series characteristics in total.

Feature set Size R package(-s) used // detailed list of feature names

catch22 22 catch22 // DN HistogramMode 5, DN HistogramMode 10, CO f1ecac,
CO FirstMin ac, CO HistogramAMI even 2 5, CO trev 1 num, MD hrv classic pnn40,
SB BinaryStats mean longstretch1, SB TransitionMatrix 3ac sumdiagcov,
PD PeriodicityWang th0 01, CO Embed2 Dist tau d expfit meandiff,
IN AutoMutualInfoStats 40 gaussian fmmi, FC LocalSimple mean1 tauresrat,
DN OutlierInclude p 001 mdrmd, DN OutlierInclude n 001 mdrmd,
SP Summaries welch rect area 5 1, SB BinaryStats diff longstretch0,
SB MotifThree quantile hh, SC FluctAnal 2 rsrangefit 50 1 logi prop r1,
SC FluctAnal 2 dfa 50 1 2 logi prop r1, SP Summaries welch rect centroid,
FC LocalSimple mean3 stderr

tsfeats 13 tsfeatures // stability, lumpiness, crossing.points.fraction, flat.spots.fraction, nonlinearity,
ur.kpss, ur.pp, arch.lm, ACF1, ACF10.SS, ACF.seas, PACF10.SS, PACF.seas

stlfeats 12 tsfeatures // nperiods, seasonal period, trend, spike, linearity, curvature, e acf1, e acf10,
seasonal strength, peak, trough, lambda

hctsa 13 tsfeatures // embed2 incircle 1, embed2 incircle 2, ac 9, firstmin ac, trev num,
motiftwo entro3, walker propcross, std1st der, boot stationarity fixed,
boot stationarity ac2, histogram mode 10, outlierinclude mdrmd, first acf zero crossing

heterogeneity,
portmanteau

6 tsfeatures, WeightedPortTest // arch acf, garch acf, arch r2, garch r2, lag1.Ljung.Box,
lagF.Ljung.Box

stationarity,
normality

10 tseries, stats, nortest // ADF, KPSS.Level, KPSS.Trend, PP, ShapiroWilk, Lilliefors,
AndersonDarling, Pearson, CramerVonMises, ShapiroFrancia

kurtosis,
skewness,
misc

11 PerformanceAnalytics // kurtosis.fisher, kurtosis.sample, skewness.fisher, skew-
ness.sample, skewness.variability, skewness.volatility, skewness.kurtosis.ratio,
misc.smoothing.index, misc.Kelly.ratio, misc.drowpdown.average.depth,
misc.drowpdown.average.length

Hurst 17 PerformanceAnalytics, longmemo, tsfeatures, liftLRD, pracma, fractal // PerformanceAn-
alytics, Whittle, HaslettRaftery, lifting, pracma.Hs, pracma.Hrs, pracma.He, pracma.Hal,
pracma.Ht, fractal.spectral.lag.window, fractal.spectral.wosa, fractal.spectral.multitaper,
fractal.block.aggabs, fractal.block.higuchi, fractal.ACVF.beta, fractal.ACVF.alpha, frac-
tal.ACVF.HG

fractality 7 fractaldim // HallWood, DCT, wavelet, variogram, madogram, rodogram, periodogram

entropy 9 TSEntropies, ForeCA // TSE.approximate, TSE.fast.sample, TSE.fast.approx,
spectral.smoothF.wosa, spectral.smoothF.direct, spectral.smoothF.multitaper, spec-
tral.smoothT.wosa, spectral.smoothT.direct, spectral.smoothT.multitaper

anomaly 10 pracma, anomalize // fraction.TukeyMAD, twitter.iqr.fraction, twitter.iqr.infraction.pos,
twitter.iqr.fraction.pos, twitter.iqr.abs.last.pos, twitter.iqr.rel.last.pos, twit-
ter.iqr.infraction.neg, twitter.iqr.fraction.neg, twitter.iqr.abs.last.neg, twit-
ter.iqr.rel.last.neg

Feature engineering for assistant models consisted of pooling various known time series characteristics into

a collection of 130 features (see Table 1). Almost half of all features were previously introduced as state-

of-the-art time series features, available in R packages catch22 (Lubba et al., 2019), consisting of carefully



selected 22 features, and tsfeatures (Hyndman et al., 2019), consisting of 42 features also used in FFORMA

framework (Montero-Manso et al., 2018; Montero-Manso et al., 2020).

Seeking to extend characteristics of time series we considered calculating features not only on the original

data (orig), but also on the results of 2 transformations (diff and log):

• diff - first differences help to improve/achieve stationarity;

• log - logarithmic transform has variance stabilizing properties.

Calculating 130 features on 3 variants of time series (orig, diff and log) results in a final set of 390 features,

which are later used for building assistant meta-learners.

3.2 Forecasting models

Representative pool of 22 univariate time series forecasting models was selected (see Table 2). Diversity of

models to consider for a potential ensemble varies from simple such as seasonal naive and linear trend to

complex such as BATS and Prophet models, but most of them are statistical in nature, with the exception

of machine learning approaches NNAR and xgb. Model implementations from 6 R packages were used,

where parameters when creating model on time series training part were chosen automatically if model

implementation had that capability.

3.3 Forecasting errors

After fitting univariate time series model on training part forecasting can be performed for a required number

of steps ahead, i.e. forecasting horizon. Comparison of forecasted values with ground truth allows to evaluate

how accurate the forecast was and for this purpose forecasting errors are used. We estimate 3 absolute and

3 relative forecasting errors.

Absolute forecasting errors considered:

• RMSE - root mean squared error;

• MAE - mean absolute error;

• MDAE - median absolute error.



Table 2: Selected pool of 22 base models for univariate time series forecasting. Most models are statistical,
except for NNAR and xgb, which are based on machine learning. The horizontal line separates a few simple
models from the remaining complex ones.

Model R package::function Description

SNaive forecast::snaive Seasonal näıve method
LinTrend forecast::tslm Linear trend
LinTrendSeason forecast::tslm Linear trend with seasonal dummies
QuadTrend forecast::tslm Quadratic trend
QuadTrendSeason forecast::tslm Quadratic trend with seasonal dummies

TSB tsintermittent::tsb Teunter-Syntetos-Babai method (based upon Croston for intermittent
demand) with optimized parameters (Kourentzes, 2014)

ARIMA forecast::auto.arima Autoregressive integrated moving average (Hyndman and Khandakar,
2008)

SARIMA forecast::auto.arima Seasonal autoregressive integrated moving average (Hyndman and
Khandakar, 2008)

ETS forecast::ets Family of exponential smoothing state space models (Hyndman et al.,
2002; Hyndman et al., 2008)

HoltWinters stats::HoltWinters Holt-Winters filtering with additive seasonality (Winters, 1960)
Theta forecast::thetaf Theta method - simple exponential smoothing with drif (Assimakopou-

los and Nikolopoulos, 2000)t
STL-ARIMA forecast::stlm ARIMA model on seasonal decomposition of time series (Cleveland

et al., 1990)
STL-ETS forecast::stlm ETS model on seasonal decomposition of time series (Cleveland et al.,

1990)
StructTS stats::StructTS Basic stuctural model - local trend with seasonality (Durbin and Koop-

man, 2012)
BATS forecast::tbats Exponential smoothing with Box-Cox transform, ARMA errors, trend

and complex seasonality (Livera et al., 2011)
Prophet prophet::prophet Decomposable time series and generalized additive model with non-

linear trends (Taylor and Letham, 2017)
NNAR forecast::nnetar Neural network with a hidden layer and lagged inputs (Hyndman and

Athanasopoulos, 2018)
xgb-none forecastxgb::xgbar Extreme gradient boosting model with lagged inputs (Ellis, 2016)
xgb-decompose forecastxgb::xgbar Extreme gradient boosting model with lagged inputs and

decomposition-based seasonal adjustment (Ellis, 2016)
thief-ARIMA thief::thief Temporal hierarchical approach with ARIMA at each level (Athana-

sopoulos et al., 2017)
thief-ETS thief::thief Temporal hierarchical approach with ETS at each level (Athanasopou-

los et al., 2017)
thief-Theta thief::thief Temporal hierarchical approach with Theta at each level (Athana-

sopoulos et al., 2017)

Relative forecasting errors considered:

• SMAPE - symmetric mean absolute percentage error;

• MAAPE - mean arctangent absolute percentage error (Kim and Kim, 2016);

• MASE - mean absolute scaled error (Hyndman and Koehler, 2006).

Final ranking of forecasting models was constructed by averaging individual rankings, obtained for each error

type separately. In case of ties after averaging out a faster model was given priority in the final ranking.



Incorporation of both absolute and relative errors into the final ranking allows to sort out models more

comprehensively and without less bias towards a single type of error. Relative forecasting errors were also

reported in experiments to compare introduced approach to benchmark methods (Theta and Comb).

3.4 Meta-learner model

Meta-learner for our experiments was random forest (RF) (Breiman, 2001) regression machine learning

model. RF is an ensemble of many (ntrees in total) CART (classification and regression tree) instances, where

each CART is built on an independent bootstrap sample of the original dataset while selecting from a random

subset (of size mtry) of features at each tree node. Fast RF implementation in R package ranger (Wright

and Ziegler, 2017) was chosen, which, conveniently for the specifics of our assistants, allows to always

include some variables as candidates for binary node split besides mtry randomly selected ones. Time series

features were left for random selection, but a few meta-information features were set to always.split.variables.

Meta-information features were forecasting horizon length and data type (daily, weekly or monthly) and A1

assistant additionally included model name (first column in Table 2) and three dummy indicators on model

capabilities such as seasonality, complexity and decomposition.

RF size ntrees was fixed at 256, as recommended in literature (Oshiro et al., 2012; Probst and Boulesteix,

2017). Classical RF should be composed of unpruned CART, which allows growing trees to maximal possible

depth and would correspond to min.node.size=1 setting, but in our case min.node.size parameter was tuned

together with mtry using Bayesian optimization in R package tuneRanger with 21 warm-up and 9 tuning

iterations. Minimization objective for A1 asistant was out-of-bag root mean squared logarithmic error - a

variant of RMSE penalizing errors at lower values and achieving that prediction of best ranked cases is more

precise than worse ranked candidates. Minimization objective for A2 assistant was a simple out-of-bag RMSE

metric. Both being RF regression models, A1 could be nick-named as ”ranker” whereas A2 as ”capper” due

to different tasks they are dedicated to: A1 ranks 22 forecasting models to find best candidates for time

series at hand while A2 tries to propose an optimal size of forecasting ensemble, i.e. number of best ranked

models to choose for forecast pooling.

Two variants of forecast pooling, namely, Simple (arithmetic average) and Weighted (weighted average)

were evaluated for meta-learning. A1 assistant was identical in both variants, but A2 was constructed

separately after evaluation of cumulative pooling of forecasts from the best A1-ranked univariate time series

models, where pooling was done either with equal weights or weights derived from reciprocal rank (Aiolfi

and Timmermann, 2006).



4 M4-micro dataset

From an original M4 subset of 12563 micro-economic time series we excluded 2 monthly cases (ID=19700

and ID=19505) due to the lack of dynamics. Among 12561 selected cases level of aggregation was as follows:

1476 daily, 112 weekly and 10973 monthly. All selected cases were pre-processed by segmenting them to

have a proper train/test splits at several forecasting horizons. Forecasting horizons with varying number of

steps ahead were considered: 15, 30, 90, 180, 365 and 730 days for daily data; 4, 13, 26, 52, and 104 weeks

for weekly data; 6, 12, 24, 60 and 120 months for monthly data.
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Figure 1: Visualization of M4-micro dataset by 2D t-SNE projection of time series features: full sample
of 12561 time series (left) and result after balanced sampling into 2 cross-validation folds, containing 6281
(center) and 6280 (right) time series. Color of the point denotes the length of time series.

With respect to specifics of time series representation space (Spiliotis et al., 2020) and to avoid potential

concept drift situation if meta-learners are built using random sub-spaces we split dataset by performing a

careful stratified 2-fold cross-validation (2-fold CV). Stratification is done here by efficient balanced sam-

pling (Deville and Tillé, 2004) on 3D t-SNE (van der Maaten, 2014) projection of time series features, which

allows to split time series dataset into two equally-sized parts where in each part the overall representation

space of initial dataset is covered thoroughly. Result of such stratification is visualized in Fig. 1, where

resulting CV folds are depicted after 2D t-SNE projection.

Time series expansion by segmenting data into several train/test hold-out splits was done as follows: initially

we expand a set of time series from 12561 to 38633 (see initial expansion in Table 3) to be able to test

various forecasting horizons, then we increase amount of time series from 38633 to 92846 (see final expansion

in Table 3) by considering additional splitting time series in half to be able to train meta-learners on more

data. Initial expansion was carried out for the purpose of benchmarking various forecasting horizons and only

recent data was split-off for testing, whereas final expansion was considered as a way of data augmentation to

harvest more training data for meta-learners where besides initial expansion extra two splits were done where



Table 3: Expanding M4 micro dataset for benchmarking and augmentation. Expansion was performed by
segmenting each time series into various train/test splits fulfilling 80/20 heuristic, which ensures that amount
of data available for time series model training is at least 4 times larger than for testing, where the amount
of data for testing is defined by forecasting horizon.

Horizon
Initial expansion for benchmarking Final expansion for augmentation
Full sample CV fold 1 CV fold 2 Full sample CV fold 1 CV fold 2

15 days 1476 736 740 4374 2178 2196
30 days 1443 720 723 4201 2100 2101
90 days 1335 667 668 3699 1853 1846

180 days 1181 593 588 3313 1661 1652
365 days 1047 524 523 2693 1346 1347
730 days 780 389 391 780 389 391∑

7262 3629 3633 19060 9527 9533

4 weeks 112 58 54 206 106 100
13 weeks 112 58 54 206 106 100
26 weeks 47 24 23 141 72 69
52 weeks 47 24 23 119 60 59

104 weeks 36 18 18 76 40 36∑
354 182 172 748 384 364

6 months 10973 5486 5487 32904 16452 16452
12 months 10973 5486 5487 22317 11166 11151
24 months 5574 2792 2782 14110 7055 7055
60 months 3432 1713 1719 3630 1813 1817

120 months 65 31 34 77 33 44∑
31017 15508 15509 73038 36519 36519∑
38633 19319 19314 92846 46430 46416

possible - hold-out on older and newer halves of time series. Following the recommendation of (Cerqueira

et al., 2020) for using out-of-sample holdout split in multiple testing periods, we consider 80/20 as a sufficient

train/test ratio and refuse to segment time series if the amount of training data, after leaving out last few

observations for testing (based on the size of forecasting horizon), drops down below 80%.

5 Experimental results

Forecasting experiment was performed using 2-fold CV by creating assistants on CV fold 1 of final expansion

and testing success of assistant-recommended forecasting ensemble on CV fold 2 of initial expansion and

vice versa. Besides forecasting using proposed approach benchmark methods Theta and Comb were used on

initial expansion and relative forecasting errors were calculated for comparison.

Results by SMAPE (see Table 4) demonstrate that both Simple and Weighted variants of meta-learning

outperform Theta and Comb techniques. Weighted slightly outperformed Simple variant for more than half

(10 out of 16) horizons and also overall (see last row in Table 4) .



Table 4: Forecasting results according to SMAPE forecasting error.
∑

denotes results over all horizons, the
best result for each row is formatted in italic-bold.

Horizon Theta Comb Simple Weighted

15 days 2.507 ± 0.152 2.511 ± 0.146 2.326 ± 0.145 2.332 ± 0.153
30 days 3.354 ± 0.277 3.340 ± 0.282 3.233 ± 0.287 3.229 ± 0.286
90 days 5.587 ± 0.312 5.576 ± 0.318 5.060 ± 0.310 5.064 ± 0.310

180 days 8.296 ± 0.444 8.565 ± 0.452 7.298 ± 0.438 7.282 ± 0.438
365 days 17.258 ± 0.919 17.304 ± 0.895 14.098 ± 0.829 14.145 ± 0.828
730 days 18.270 ± 1.003 19.052 ± 1.042 16.396 ± 0.974 16.395 ± 0.991∑

8.003 ± 0.245 8.133 ± 0.248 7.026 ± 0.225 7.031 ± 0.226

4 weeks 9.483 ± 1.152 9.653 ± 1.198 7.941 ± 1.024 7.867 ± 1.000
13 weeks 9.365 ± 1.130 8.910 ± 1.047 8.481 ± 1.076 8.637 ± 1.222
26 weeks 8.895 ± 4.395 8.594 ± 4.404 8.184 ± 4.378 8.092 ± 4.371
52 weeks 13.340 ± 4.619 12.575 ± 4.036 10.763 ± 3.519 10.922 ± 3.784

104 weeks 17.452 ± 5.277 18.198 ± 6.037 16.273 ± 4.767 16.008 ± 4.855∑
10.690 ± 1.126 10.534 ± 1.127 9.366 ± 1.010 9.374 ± 1.041

6 months 12.150 ± 0.278 12.147 ± 0.286 9.158 ± 0.214 9.096 ± 0.212
12 months 12.183 ± 0.246 12.874 ± 0.269 10.479 ± 0.222 10.420 ± 0.220
24 months 9.544 ± 0.352 9.325 ± 0.353 8.451 ± 0.327 8.486 ± 0.333
60 months 12.724 ± 0.604 14.780 ± 0.740 11.617 ± 0.583 11.449 ± 0.567

120 months 15.051 ± 5.820 13.656 ± 4.244 10.798 ± 3.371 10.650 ± 3.329∑
11.763 ± 0.161 12.192 ± 0.174 9.774 ± 0.140 9.719 ± 0.139∑
11.047 ± 0.139 11.414 ± 0.149 9.254 ± 0.121 9.210 ± 0.120

Table 5: Forecasting results according to MAAPE forecasting error.
∑

denotes results over all horizons, the
best result for each row is formatted in italic-bold.

Horizon Theta Comb Simple Weighted

15 days 2.520 ± 0.151 2.536 ± 0.153 2.335 ± 0.148 2.335 ± 0.153
30 days 3.312 ± 0.268 3.296 ± 0.269 3.185 ± 0.273 3.183 ± 0.272
90 days 5.538 ± 0.316 5.526 ± 0.318 5.033 ± 0.317 5.036 ± 0.317

180 days 8.047 ± 0.433 8.366 ± 0.444 7.161 ± 0.434 7.142 ± 0.434
365 days 15.431 ± 0.783 15.538 ± 0.772 13.132 ± 0.766 13.165 ± 0.765
730 days 17.696 ± 0.971 17.989 ± 0.975 16.306 ± 0.993 16.286 ± 1.000∑

7.622 ± 0.226 7.719 ± 0.228 6.842 ± 0.218 6.842 ± 0.219

4 weeks 8.750 ± 1.027 8.856 ± 1.061 7.570 ± 0.953 7.514 ± 0.938
13 weeks 9.475 ± 1.146 8.896 ± 1.057 8.636 ± 1.142 8.717 ± 1.207
26 weeks 8.471 ± 4.175 8.233 ± 4.190 7.945 ± 4.213 7.849 ± 4.208
52 weeks 12.084 ± 3.451 11.620 ± 3.374 10.231 ± 3.223 10.270 ± 3.320

104 weeks 15.683 ± 3.885 16.119 ± 4.218 15.251 ± 3.890 14.979 ± 3.921∑
10.090 ± 0.955 9.891 ± 0.962 9.091 ± 0.938 9.064 ± 0.949

6 months 11.059 ± 0.242 10.983 ± 0.243 8.892 ± 0.207 8.840 ± 0.206
12 months 12.239 ± 0.244 13.203 ± 0.273 10.648 ± 0.224 10.593 ± 0.223
24 months 9.119 ± 0.320 8.906 ± 0.319 8.190 ± 0.306 8.200 ± 0.307
60 months 12.500 ± 0.601 13.512 ± 0.601 11.330 ± 0.556 11.197 ± 0.548

120 months 11.883 ± 3.194 11.499 ± 2.941 9.389 ± 2.538 9.341 ± 2.539∑
11.289 ± 0.151 11.676 ± 0.158 9.658 ± 0.136 9.607 ± 0.136∑
10.589 ± 0.129 10.916 ± 0.135 9.123 ± 0.118 9.082 ± 0.117

Results by MAAPE (see Table 5) demonstrate that both Simple and Weighted variants of meta-learning

outperform Theta and Comb techniques. Weighted slightly outperformed Simple variant for more than half

(11 out of 16) horizons and also overall (see last row in Table 5).



Table 6: Forecasting results according to MASE forecasting error.
∑

denotes results over all horizons, the
best result for each row is formatted in italic-bold.

Horizon Theta Comb Simple Weighted

115 days 1.047 ± 0.050 1.056 ± 0.055 0.963 ± 0.046 0.964 ± 0.049
30 days 1.365 ± 0.076 1.362 ± 0.077 1.311 ± 0.081 1.310 ± 0.081
90 days 2.245 ± 0.106 2.239 ± 0.107 1.997 ± 0.102 1.996 ± 0.101

180 days 3.265 ± 0.200 3.334 ± 0.200 2.910 ± 0.202 2.904 ± 0.202
365 days 5.987 ± 0.309 6.132 ± 0.320 5.053 ± 0.301 5.060 ± 0.300
730 days 7.676 ± 0.521 7.798 ± 0.517 6.747 ± 0.484 6.761 ± 0.504∑

3.115 ± 0.098 3.161 ± 0.099 2.750 ± 0.091 2.751 ± 0.092

4 weeks 0.579 ± 0.077 0.592 ± 0.084 0.480 ± 0.070 0.475 ± 0.068
13 weeks 0.486 ± 0.052 0.476 ± 0.058 0.426 ± 0.047 0.432 ± 0.051
26 weeks 0.681 ± 0.324 0.680 ± 0.350 0.622 ± 0.347 0.599 ± 0.340
52 weeks 0.993 ± 0.299 0.967 ± 0.308 0.821 ± 0.282 0.806 ± 0.286

104 weeks 1.713 ± 0.731 1.689 ± 0.701 1.564 ± 0.729 1.587 ± 0.753∑
0.733 ± 0.103 0.728 ± 0.103 0.637 ± 0.101 0.635 ± 0.103

6 months 0.642 ± 0.011 0.637 ± 0.011 0.513 ± 0.010 0.511 ± 0.010
12 months 0.730 ± 0.013 0.750 ± 0.014 0.625 ± 0.012 0.622 ± 0.012
24 months 1.153 ± 0.029 1.118 ± 0.029 0.977 ± 0.027 0.977 ± 0.027
60 months 1.986 ± 0.099 2.428 ± 0.131 1.919 ± 0.221 1.827 ± 0.130

120 months 4.217 ± 1.153 4.025 ± 1.120 3.162 ± 0.982 3.144 ± 0.989∑
0.921 ± 0.015 0.968 ± 0.018 0.797 ± 0.026 0.785 ± 0.017∑
1.332 ± 0.023 1.378 ± 0.025 1.163 ± 0.028 1.153 ± 0.023

Results by MASE (see Table 6) demonstrate that both Simple and Weighted variants of meta-learning

outperform Theta and Comb techniques. Weighted slightly outperformed Simple variant for more than half

(12 out of 16) horizons and also overall (see last row in Table 5).

Forecasting errors showed an expected and consistent tendency to increase together with increasing forecast-

ing horizon length. Interestingly, MASE errors were lowest overall for weekly whereas SMAPE and MAAPE

for daily data. To summarize over all data types and horizons: among benchmark methods Theta tends to

slightly outperform Comb and meta-learning approaches win over both benchmarks with Weighted variant

as the best.

6 Conclusions

Extensive evaluation of the proposed meta-learning approach on micro-economic time series from M4 com-

petition demonstrated that meta-learning is capable to outperform benchmark methods Theta and Comb.

Best performance was achieved by pooling forecasts from assistant-recommended univariate time series mod-

els using weighted average with weights corresponding to reciprocal rank. Regression meta-learner model

was more successful and had a better out-of-bag fit for A1 than for A2 assistant. Lower forecasting errors



were obtained using weighted variant of forecasting ensemble over the Theta method: 9.21% versus 11.05%

by SMAPE, 9.08% versus 10.59% by MAAPE, 1.33 versus 1.15 by MASE. Considering a larger set of time

series data for training meta-learner and exploring usefulness of feature engineering by sequence-to-sequence

auto-encoder would be interesting directions for further research.
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